150-летняя шахматная головоломка о ферзях разгадана - Jaaj.Club
[FR] Poll
Que pensez-vous de l'idée du professeur Gorin de créer des êtres humains capables de vivre dans la mer ?


[FR] Events

12.08.2025 18:44
***

En solde !

Echo de destruction est un nouveau roman post-apocalyptique
Zoya Biryukova.

Un monde post-catastrophe, une guerre ancienne entre vampires et loups-garous, et un rituel qui décidera du sort de l'humanité.


Zoya Biryukova est une joueuse et une fan de dark fantasy. Son amour pour les mondes des vampires et des loups-garous l'a incitée à créer sa propre histoire sur l'après-apocalypse et les forces anciennes.

***
02.07.2025 20:55
***

Déjà en vente !

Une nouvelle histoire de Katerina Popova dans un roman mystique


Quelqu'un de vivant ? - Katerina Popova read online

***

[FR] Comments

Спасибо!
02.09.2025 Elizaveta3112
L'intrigue du livre suggère subtilement que si quelque chose semble suspect, il ne faut pas ignorer ce sentiment. Au centre du récit se trouvent les relations compliquées de la protagoniste Varya avec les autres. L'auteur aborde le thème important de la confiance dans les personnes que nous connaissons depuis de nombreuses années. Parfois, ils peuvent nous surprendre. J'ai aimé ce livre, je le recommande.
01.09.2025 Alexsa
Il était intéressant de lire comment l'IA aide l'utilisateur à naviguer plus facilement sur le site. Par exemple, si vous saisissez la requête "smartphone" dans une boutique en ligne, le système vous suggérera automatiquement, la prochaine fois, des produits liés au téléphone dans la recherche : écouteurs, montres intelligentes, etc. Cela permet de gagner beaucoup de temps.
31.08.2025 Fernan7do8
Heureux que vous l'ayez aimé)
30.08.2025 Elizaveta3112
J'ai découvert avec grand intérêt la collection d'articles "Mythologie scandinave et Vikings" de Jaaj.Club. Le matériel est présenté d'une manière très accessible et fascinante, ce qui est particulièrement précieux pour ceux qui commencent à se familiariser avec ce sujet. L'auteur a réussi à transmettre l'atmosphère des légendes et des mythes anciens, ainsi qu'à montrer comment la mythologie scandinave est parvenue jusqu'à nous à travers le prisme du christianisme. J'ai particulièrement apprécié la description de l'arbre-monde Yggdrasil et des idées cosmogoniques. Cette collection est une source d'inspiration pour en savoir plus sur la culture et les croyances vikings, et j'ai hâte de suivre les nouvelles publications. Je la recommande à tous ceux qui s'intéressent à l'histoire et à la mythologie de la Scandinavie !
30.08.2025 RABOTA1

150-летняя шахматная головоломка о ферзях разгадана

15.02.2022 Рубрика: Интересное
Автор: vassyap
Книга: 
3131 0 0 5 574
Сколько ферзей можно расставить на шахматной доске так, чтобы ни один из них не атаковал друг друга? Гарвардский математик наконец-то решил эту шахматную головоломку.
150-летняя шахматная головоломка о ферзях разгадана
фото: sciencepop.ru
Математик из Гарвардского университета решил своего рода ферзевый гамбит 150-летней давности: восхитительную головоломку с n-ным количеством ферзей. В недавно опубликованном исследовании (это означает, что оно ещё не было рецензировано) Майкл Симкин, научный сотрудник Гарвардского центра математических наук и приложений, оценил решение сложной математической задачи, которая в общих чертах основана на правилах шахмат.

Ферзь считается самой сильной фигурой на доске, потому что он может двигаться в любом направлении, включая диагонали. Так сколько же ферзей может поместиться на шахматной доске так, чтобы они не попадались друг другу на пути?

Логика игры здесь похожа на головоломку судоку. Нужно расставить точки на доске так, чтобы они не пересекались.

Классическая шахматная доска представляет собой матрицу квадратов восемь на восемь. Самая известная версия головоломки соответствует доске, потому что в ней участвуют восемь ферзей — и в этом случае есть 92 решения. Но «проблема n ферзей» на этом не заканчивается; это потому, что её природа асимптотична, то есть ответы приближаются к неопределенной величине, достигающей бесконечности.

150-летняя шахматная головоломка о ферзях
Фото: chessrussian.ru

До сих пор эксперты решали задачу для всех натуральных чисел до 27 ферзей на доске 27 на 27. Однако решения для двух или трёх нет, потому что нет возможного расположения ферзей, удовлетворяющего критериям. Но как насчет чисел выше 27? Для восьми ферзей существует всего 92 решения, а для 27 ферзей существует более 200 квадриллионов решений. Легко увидеть, как решение задачи для чисел выше 27 становится чрезвычайно громоздким или даже невозможным без большей вычислительной мощности, чем у есть на данный момент.

В своей работе Симкин подошёл к теме с помощью точной математической оценки количества решений при увеличении n. В конечном итоге он пришёл к следующей формуле: (0,143n)n. Другими словами, существует приблизительно (0,143n)n способов расставить ферзей так, чтобы ни один из них не атаковал друг друга на шахматной доске размером n на n.

Сама математика представляет собой сложный набор матричной алгебры, который занимает 50 страниц доказательств.

И интересно, что технически результаты Симкина всё ещё являются лишь оценкой! Но это лучше, чем то, с чем математики работали до сих пор. «На очень большой шахматной доске с миллионом ферзей, например, 0,143 умножается на один миллион, и получается около 143 000. Затем это число возводится в степень одного миллиона, то есть оно умножается само на себя столько раз. Окончательный ответ — цифра из пяти миллионов цифр», — поясняет Гарвард в пресс-релизе.

150-летняя шахматная головоломка о ферзях
Фото: naukatehnika.com

Чтобы прийти к своему решению, Симкин сначала взял средние значения распределения ферзей по доске. Он использовал эти данные, чтобы установить значение нижней границы, то есть минимальное количество решений, которое будет иметь конкретное значение n. Используя стратегию, известную как «метод энтропии», Симкин изучил созданную им часть сетки (и назвал её «queenon»), чтобы найти значение верхней границы. Оба подхода используют усреднение и/или случайность как способ помочь смоделировать правильное значение. Симкин обнаружил, что две разные функции, которые он установил для значений нижнего и верхнего пределов, почти одинаковы — это означает, что пул возможных ответов очень тесно перемешан между ними, устанавливая надежную математическую оценку.

Вся эта тяжелая работа означает, что впервые с 1869 года имеется намёк на решение проблемы n ферзей. Для Симкина и его факультета в Гарварде это огромное достижение. Иронично то, что исследователь не играет в шахматы.

[FR] Sign up for our free weekly newsletter

[FR] Every week Jaaj.Club publishes many articles, stories and poems. Reading them all is a very difficult task. Subscribing to the newsletter will solve this problem: you will receive similar materials from the site on the selected topic for the last week by email.
[FR] Enter your Email
Хотите поднять публикацию в ТОП и разместить её на главной странице?

Непризнанный гений Бобби Фишер

Роберт Джеймс Фишер был американским чемпионом мира по шахматам. Даже люди, ничего не смыслившие в шахматах, знали Бобби Фишера как чемпиона мира. В Америке начался «фишеровский бум», миллионы людей бросились учиться играть в шахматы, которые мгновенно стали самой актуальной игрой. Читать далее »

Как люди научились считать

Когда говорят, «научились считать», это подразумевает, что когда-то давно люди совсем не умели считать. Однако исследования показали, что это совсем не так. Читать далее »

Животные чувствуют приближение бедствий

Эти рассказы о поведении животных до стихийных бедствий побудили некоторых исследователей уделить серьезное научное внимание теории о том, что у животных могут быть встроенные системы, предупреждающие их о надвигающихся опасностях. Читать далее »

"Ангельское свечение" в битве при Шайло

Битва при Шайло длилась два дня, потом южане, потеряв командующего, были вынуждены отступить, оставив поле боя своим противникам северянам. Медики вдруг стали замечать, что от тел некоторых раненых исходит слабое, но отчётливо видное в темноте сияние. Разгадку удивительного феномена в 2001 году сумел найти 17-летний школьник. Читать далее »

Комментарии

-Комментариев нет-